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Abstract. The presence of nonlinear relationships between surface soil moisture and various
hydrologic processes suggests that grid-scale water and energy fluxes cannot be accurately
modeled without subgrid-scale soil moisture information. For land surface and energy bal-
ance models run over continental- to global-scale domains, accurate fine-scale soil moisture
observations are nearly impossible to obtain on a consistent basis and will likely remain so
through the next generation of soil moisture remote sensors. In the absence of such data sets,
an alternative approach is to generalize the statistical behavior of soil moisture fields across
the relevant range of spatial scales. Downscaling procedures offer the possibility that the
fine-scale statistical properties of soil moisture fields can be inferred from coarse-scale data.
Such an approach was used for a 29 x 200 km transect of 25 m active radar data acquired
over Oklahoma by NASA’s spaceborne imaging radar imaging (SIR-C) mission on April 12,
1994. Using a soil dielectric inversion model, the radar data were processed to provide esti-
mates of surface soil dielectric values, which can be equated to volumetric soil moisture
content. The soil moisture field along each strip was analyzed for evidence of spatial scaling
for scales ranging from 100 to 6400 m. Results suggest that a spatial scaling assumption may
not always be an appropriate basis for a downscaling approach. Prospects for the develop-
ment of a more robust downscaling procedure for soil moisture are discussed.

1. Introduction

Recent advances in surface soil moisture remote sensing
have resulted in the possibility that such observations can be
directly assimilated into weather prediction models. The cru-
cial barrier to such an integration is the relatively coarse tem-
poral and spatial scales at which remote sensors are likely to
provide information about surface soil moisture conditions.
Coarse temporal resolutions can be smoothed by running a
water balance model in the interim between soil moisture im-
age acquisition [Houser et al., 1998]. Extracting soil moisture
information at spatial scales finer than a sensor’s resolution is
more difficult. However, past studies by Dubayah et al.
[1996] and Rodriguez-Iturbe et al. [1995] have shown that at
scales of 100 to 1600 m, soil moisture fields may self-
organize in such a way that their coarse-scale statistical prop-
erties provide information about variability at finer scales.
Following the definitions of Bloschl and Sivipalan [1995],
such a statistical inference is referred to as “downscaling”
statistical information from coarse- to fine-scales.

The presence of nonlinear relationships between soil
moisture and hydrologic processes such as evapotranspiration,
infiltration, and recharge suggests that grid-scale results in
land-atmosphere models will be sensitive to the presence or
absence of subgrid-scale soil moisture variability. Results by
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Wood [1997] demonstrate the sensitivity of grid-scale transpi-
ration results to subgrid-scale soil moisture variability, while
Avissar and Pielke [1989] have shown that land surface het-
erogeneity can have a significant effect on grid-scale circula-
tion, surface temperature, and surface energy flux patterns in
coupled land-atmosphere models.

This paper will explore the development of a downscaling
procedure for surface soil moisture using data collected from
the spaceborne imaging radar (SIR-C) L band sensor. A ro-
bust downscaling model would allow for estimates of subgrid-
scale variability in soil moisture fields to be made based
solely on grid-scale information. These estimates could, in
turn, be used as the basis for a statistical-dynamical represen-
tation of subgrid soil moisture variability using a model
structure similar to that presented by Famiglietti and Wood
[1994] and Avissar [1992]. In this way, incorporation of sub-
grid statistical information can provide closure for the effects
of nonresolved soil moisture variability and improve predic-
tions of grid-scale water and energy fluxes.

2. Motivation for Downscaling

Nonlinear relationships between soil moisture and various
hydrologic processes motivate the need for subgrid-scale soil
moisture information.

For example, the relationship between canopy transpiration
T, surface soil moisture 6, and potential evapotranspiration E,,
is often modeled in a piecewise linear fashion [see, e.g., Fed-
erer, 1979] as
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The discontinuities in this function at the wilting point 6, and
the critical soil moisture 6, give it a nonlinear structure.

Bare soil evaporation has been parameterized by means of
a physical transport resistance in the presence of soil moisture
or soil water vapor gradients. This resistance to evaporation
Iwi is often expressed as a nonlinear function of soil moisture.
Van de Griend and Owe [1994] give the relationship as

ry =10exp [35.6(0.15-6)). )
Finally, a standard Brooks-Corey formulation predicts a

nonlinear relationship between soil moisture and relative hy-
draulic conductivity K

2+3m
0-9 \m
Kml = Km(m P (3)

where m is the pore size distribution index, 6, is the residual
soil moisture, 8, is the saturated soil moisture, and K, is the
conductivity at soil saturation. Any water balance model that
incorporates this formulation will be nonlinear with respect to
soil moisture.

As a consequence of these nonlinearities, the loss of sub-
grid information due to the imaging of soil moisture fields at
coarse grid-scale resolutions will likely impact grid aggre-
gated model output, especially during periods of soil moisture
controlled evapotranspiration. Downscaling procedures offer
the promise of recovering subgrid soil moisture information
and correcting for the effects of its omission.

3. Statistical Downscaling Model

The simplest form for a downscaling procedure is to as-
sume that soil moisture fields self-organize in a way such that
no distinct length scales can be identified. A given two-
dimensional field @ is said to exhibit “spatial scaling” if

4)

E(d)f):[ j ]Kq eles ).

where E(<Df{) is the gth statistical moment of the field re-
solved at scale A, and A, is an arbitrary reference scale usu-
ally taken to be the coarsest scale available [Gupta and Way-
mire, 1990].

For the case g = 2 (i.e., the second moment) the natural log
of (4) becomes

in[E@?)]= &, In [ ;

)

+mn[E(@? )]
max
In this analysis the field @ is defined to be field of anomalies
around the mean within the field ¥ . Therefore (5) is
equivalent to

In[Var (7, )] = K, In [ /1:1

(©)

max

]+ in[var(#, )]
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When transformed into log-log space, plots of Var (¥)) versus
AAmax Will be referred to as “scaling plots.” The log-log slope
K, will be called the “scaling exponent.” In this paper, the
term “spatial scaling” will be used be describe fields in which
(6) holds.

The magnitude of the scaling exponent can be taken as a
measure of the correlation among neighboring pixels in a
field. Zero spatial correlation corresponds to a case where
neighboring pixels are statistically independent. If these sta-
tistically independent neighboring pixels are aggregated to
form a second image at a coarser resolution than the original
image, the decrease in variability that accompanies the image
aggregation can be predicted from the central limit theorem.
Specifically, the variance of the new coarsely resolved field
Yhcoarse Can be calculated as

)= Var (‘I’A)

Var (¥, : ™

coarse

nlv’lwaxst:

where 1 ;couse 1S the number of subpixels at the original fine
pixel scale 4 that are contained within a single coarse-scale
(Acoarse) Pixel. For a two-dimensional field

2
Mo {%} : ®)
therefore (7) can be rewritten as
1 2
Var (¥,)= Var (svlmax )(T) . ©)

Rewriting (9) in the form of (6) and assigning Acoge t0 be Apax
yields

In [Var (HVA )] =-2In [L] +1In [Var (Y’im )] (10)

max

The case of zero spatial correlation among neighboring
pixels corresponds to a scaling plot with a scaling exponent
(K3) of —2. In contrast, if neighboring pixels are perfectly cor-
related over all scales, then no variability is lost during each
aggregation step, resulting in a scaling plot with a log-log
slope of zero.

In general, the degree to which neighboring pixels are cor-
related can vary as a function of scale. However, a property
of spatially scaling fields is that the correlation of neighboring
pixels is independent of resolution (scale), and a single scal-
ing exponent can be fitted to log-log plots of variance versus
scale.

If a single scaling exponent can be fitted over a range of
scales, then it should be possible to estimate the scaling expo-
nent K, using only coarse-scale data and use that value to ex-
trapolate down to finer scales. The purpose of the analysis
presented in this paper is to determine whether a fitted value
of K,, derived from grid-scale remotely sensed soil moisture
data, can be used to describe the spatial autocorrelation
structure of soil moisture at subgrid-scales.

4. Application to Remote Sensing Data

Soil moisture patterns are imposed on landscapes by proc-
esses that operate at a wide range of length scales. Hydro-
logic processes (infiltration, evapotranspiration, and runoff)
and variability in soil properties occur at spatial scales of the
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Figure 1. Location of the April 12, 1994 SIR-C transect in
southeastern Oklahoma. The transect center is located at 34°
53.9° N and 98° 2.9° W. The transect follows a line 41.1°
East of North and has dimensions of 199.9 km x 28.9 km.

order 10-1000 m, while atmospheric inputs (precipitation and
radiative forcings) occur at scales of 10° to 10° m [Wood,
1998]. As a result, understanding the spatial structure of soil
moisture fields requires soil moisture information at a wide
range of scales. Soil moisture maps derived from radar re-
mote sensing sources have the potential to meet this need.
Unfortunately, this potential has not yet been fully met. The
availability of data sets with both large spatial coverage and
fine spatial resolution is currently limited to observations
from NASA’s spaceborne imaging radar (SIR-C). These ob-
servations provide a unique view of the scaling behavior of
soil moisture fields at scales ranging from tens of meters to
hundreds of kilometers.

4.1. Description of Remote Sensing Data Set

The first SIR-C mission lasted 12 days from April 4 to 16,
1994. On April 12 a transect centered over the 525 km” Little
Washita Basin in southwest Oklahoma was acquired; see Fig-
ure 1. The transect stretched over 200 km from the southwest
corner of Oklahoma to the outer reaches of Oklahoma City.
Other April 12 transects of the region were processed but
were omitted from this analysis due to the presence of heavy
vegetation which made accurate recovery of soil moisture in-
formation difficult.
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The SIR-C system is capable of emitting and receiving
horizontally and vertically polarized signals at X, C, and L
bands. As a result, the following send and receive backscatter
polarization orientations are possible: oyy, Gyy, Oy, and Gyy.
Backscatter imagery was made available at a resolution of 25
m.

The SIR-C backscatter transect shown in Figure 2a has a
number of attributes that make it an ideal data source for the
study of soil moisture spatial scaling properties. These attrib-
utes include an L band wavelength (24 cm) which is long
enough to penetrate lightly vegetated canopies [Ulaby et al.,
1979], the availability of multiple polarization information
which facilitates the isolation of surface roughness [Jackson
et al., 1997], and an extremely large scene size to resolution
ratio (200 km versus 25 m) which captures the statistical
properties of soil moisture fields over a wide range of scales.

Coincident rainfall information at 4 km is available from
National Oceanic Atmospheric Administration Weather Sur-
veillance Radar (WSR-88D) rainfall imagery of the region.
The week preceding the data acquisition on April 12, 1994
was dry, except for a rain event on April 11. Rainfall accu-
mulations for the April 11 event are shown in Figure 2b.

4.2. Estimation of Soil Dielectric From Radar
Backscatter

The interaction of active radar signals with the land surface
is affected by surface roughness, vegetation, and the dielectric
properties of the soil. To invert the backscatter images into
soil dielectric values, the model of Dubois et al. [1995] was
applied to the 25 m L band SIR-C data. The model gives the
transformation from o and oy backscatter cross-sections to
surface roughness height # and soil dielectric ¢ as

Gy = 107275 Cf)sj(’?)loooma tan (")[kh sin (’7)] 11,07
sin”(

(11

L5
s, = 107275 C(.)S i ('7)100.0288 tan (n)[kh sin (n)]1.4ao.7
sin® ()

where # is the sensor incidence angle, a is the radar wave-
length, and k is the wave number of the radar. If both 6, and
oyy are known, then (11) can be solved simultaneously for A
and ¢.

>

Scene #1

25 km
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Figure 2a. A backscatter image of the transect. The moving window is slid along the
length of the transect at 800 m increments to define 218 distinct 25.6 x 25.6 km scenes.
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Figure 2b. Rainfall accumulations in the 24 hour period pre-
ceding image acquisition.

Wang et al. [1997] evaluated the Dubois et al. [1995]
model, as well a similar model presented by Shi et al. [1997],
over the Little Washita Basin. They concluded that the Du-
bois et al. [1995] model was capable of estimating soil mois-
ture for bare and sparsely vegetated fields within a standard
error of ~0.06 cm’/cm’. The performance of both models was
degraded when applied to fields with moderate to heavy
amounts of vegetation. This degradation was especially acute
for the Shi et al. [1997] algorithm, which appeared to break
dowr: over areas covered with even short vegetation [Wang et
al., 1997].

Dubois et al. [1995] uses the cross-polarization ratio
ooy to identify pixels that are too heavily vegetated for in-
version using (11). They suggest a masking criteria of

Sw < _114B
GVV

12)

to remove heavily vegetated pixels from radar imagery. The
ratio correlates well with vegetative indices. The value of -11
dB used as a threshold in (12) corresponds to a normalized
difference vegetation index (NDVI) of about 0.4 [Dubois et
al., 1995]. Backscatter signals in pixels that fail this criteria
are likely to be dominated by scattering off vegetation and
contain less information about underlying soil moisture con-
ditions.

Typical land cover conditions for pixels that satisfy (12)
can be assessed through comparison with other more sophisti-
cated vegetation classifications. For instance, the algorithm
of Pierce et al. [1994] uses multispectral radar data to classify
surfaces as bare soil, short vegetation, tall vegetation, and ur-
ban. Over the Little Washita Basin (located at the center of
the transect) approximately 80% of the 25 m pixels that sat-
isfy (12) on April 12, 1994 are classified as either short vege-
tation or bare soil by the Pierce et al. [1994] algorithm.

In addition, thematic mapper satellite imagery from an
overpass of the region on April 12, 1994, provides an oppor-
tunity to compare NDVI values within the Little Washita Ba-
sin to SIR-C radar data acquired on the same day. Figure 3
shows a histogram of NDVI values for pixels that pass the
criteria described in (12). Nearly 90% of these pixels satisfy
the 0.4 NDVI threshold cited by Dubois et al. [1995] as the
upper bound for the application of their model. Taken to-
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gether, results from the Pierce et al. [1994] algorithm and the
thematic mapper NDVI measurements suggest that pixels
within the transect satisfying (12) can generally be character-
ized as covered by short, sparse vegetation.

4.3. Estimation of Soil Moisture From Soil Dielectric

Soil dielectric properties in the microwave spectral region
are strongly correlated to soil moisture. For L band, Hal-
likainein et al. [1985] gives the empirical relationship be-
tween the volumetric soil moisture 6, and soil dielectric ¢ as

¢ =[119.006 - 0.5(% sand )+ 0.633 (% clay)] 6
+[3.803+0.462(% sand)- 0.341 (% clay)] 6,
+[2.862-0.012(% sand )+ 0.001 (% clay)].

13)

While it is clear that soil dielectric values are highly sensi-
tive to surface soil moisture conditions, (13) suggests they
also vary as a function of a soil’s sand and clay content. The
role of soil texture in the relationship between soil dielectric
and soil moisture appears to be unresolved. Brisco et al.
[19921 found no significant soil texture effects on the rela-
tionship between L band soil dielectric results and volumetric
soil moisture. Their empirical expression relates soil moisture
to soil dielectric and contains no reference to soil texture

6, =-2.78x107 +2.80x107¢

-5.86x 107> +5.03x 107%°. (14)

Using a truck-mounted radar, Dubois et al. [1995] found that
relationships between soil dielectric and soil moisture varied
by a maximum of 1% for a range of soil textures. Similar
work by Jackson [1990] reached the same conclusion. In
contrast to Hallikainein et al. [1985], these results suggest
that soil texture has a small, if not negligible, role in adding
variability to soil dielectric fields.

4.4. Processing for Scaling Analysis

Using the model of Dubois et al. [1995] (equation (11)),
the SIR-C backscatter transect data were processed into esti-
mates of soil dielectric constants. Two separate volumetric
soil moisture images were then created: one using the Brisco
et al. [1992] (equation (14)) model and the other based on the
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Figure 3. Histogram of NDVI values for pixels that pass the
criteria described in (12).
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Figure 4. Fraction of pixels per scene that can be inverted
into soil moisture estimates. Scenes with dotted results were
deemed to be inadequately sampled and subsequently dropped
from the analysis.

model of Hallikainein et al. [1985](equation (13)). A 1 km
soil map derived from the State Soil Geographic (STATSGO)
data base provided the clay and sand fractions required by
(13).

Once inversion into soil moisture was complete, a 25.6 km
by 25.6 km moving window was passed along the length of
the two soil moisture transects at increments of 800 m. At
every increment a 1024 by 1024 pixel window was defined.
As illustrated in Figure 2a, along the length of the transect
there are 218 possible positions for this window. Each win-
dow (or scene) contained a number of 25 m pixels that either
failed to meet the criteria established in (12) or returned di-
electric values that could not be converted into soil moisture
values [Wang et al., 1997]. Figure 4 plots the fraction of each
scene that could be fully processed into soil moisture.

The fact that these fields contained masked pixels and had
a dimension less than 2 introduced a level of ambiguity into
attempts to measure their variability at scales coarser than 25
m. Previous studies by Dubayah et al. [1996] and Rodriguez-
Iturbe et al. [1995] resolved this issue by removing from their
analyses every coarse-scale pixel that contained any masked
subgrid area. The highly processed airborne remote sensing
imagery they used allowed them to do this and still retain a
sufficient sample of coarse-scale pixels from which to esti-
mate coarse-scale variances. Adoption of a similar policy for
the SIR-C data set would severely restrict the range of spatial
scales that could be examined.

Instead, an alternative approach based on statistical sam-
pling theory was developed. The procedure separates the soil
moisture field ¥ into its mean and perturbation components.
The variance of the field ¥ can then be written as follows

Var(¥)- Var(¥') = Var(77), 15)
where ¥ represents the random field, ¥ is the coarse-scale
mean of the field, and ¥’ is the local perturbation around the
coarse-scale mean.

Calculation of terms on the left-hand side of (15) is
straightforward. The perturbation variance Var (¥”) is the
variance of the 25 m dielectric pixels around the local coarse-
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scale pixel mean, while the fine-scale variance Var (¥') is the
variance of the 25 m pixels around the scene-scale mean.
Combined with (15), these two quantities provide a measure
of the coarse-scale variance.

As an example, assign 800 m to be the coarse-scale.
Within each 800 m pixel, estimated variances around the local
800 m mean and the scene-scale mean can be arrived at
through sampling 25 m pixel values

WZS m SUZS m l[/25 m
PS>

(S , — 800 m __800m 800m
¥’ /800m N [ n—1

(SV’ )800 m - Z-(ZZ—SJ‘—_'”—W)Z'

800m n

n-1 (16)

amn

where n is the sample size, N is the population size, and uy the
mean of the entire scene. In (16), n is the number of un-
masked 25 m pixels sampled within an 800 m pixel and N the
total number of 25 m pixels in an 800 m pixel (1024). The
sample size n will vary depending on the number of un-
masked 25 m pixels remaining in each 800 m pixel. A “sam-
pling criteria” can be defined that expresses the minimum
fraction of fine-scale pixels that each coarse-scale pixel must
contain in order to be included in the sampling. For this
analysis it was set at 25%. This criteria sets a lower bound on
acceptable values of n. The factor N-1/N is included in (16)
to account for the effect of finite population sizes. Equation
(17) describes sampling from an extremely large population
(the 2*° 25 m pixels in each scene), so the factor is omitted.
Likewise, the sample size is sufficiently large that the loss of
a single degree of freedom due to the estimation of the scene-
scale mean yuy can be neglected in (17).

From statistical sampling theory, the distribution of these
sampled variances is

2 Var (W/)B(Dm

(S‘I")SOOm ~ Xn-1 (18)
n-1
Var (¥
P e (n Jonw, (19)

where y? is the chi-square distribution.
Averaging the sampled variances within each 800 m pixel
over all the 800 m pixels contained in a scene yields

2 Var (e,
2 Var (¥ 00m :Va_r(g”)

(Syds00m = Xne1 (20)
n—-1
—_ Var (¥ g
(S Jsoom = 20— = Var (¢) @n
Combing (20) and (21) with (15) gives
(Sp)s00m = (Sy)soom = Var<¥7). (22)

Equation (22) allows for the estimation of an 800 m scale
variance (i.e., a coarse-scale variance) based on a sampling of
25 m pixel values. As a result, 800 m pixels that contain
missing 25 m pixels can be included in the analysis. The es-
timated variances will contain sampling error; however, indi-
vidual sampling errors mutually cancel as the sampled vari-
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Figure 5. (a) Image of the soil dielectric field estimated along the transect using the Du-
bois et al. [1995] model. Black areas are surfaces that were masked out of the analysis
due to excessive vegetation. (b) Image of scil moisture field estimated along the transect
by applying the Hallikainein et al. [1985] model to results of the Dubois et al. [1995]

model.

ances within each 800 m pixel are averaged over the entire
scene.

For each scene in the transect, backscatter, soil dielectric,
and soil moisture variances at scales of 100, 200, 400, 800,
1600, 3200, and 6400 m were estimated using the sampling
procedure outlined in (22). To ensure adequate spatial sam-
pling and to remove any ambiguity in the results due to
masking, scaling plots were constructed only for scenes in
which all sixteen 6400 m pixels met the 25% sampling crite-
ria. The location of scenes where spatial sampling was
deemed inadequate is shown in Figure 3. Variances at scales
finer than 100 m were considered compromised by speckle
contamination and not analyzed. For this analysis, scales
coarser than 800 m will be referred to as “coarse-scale” and
those finer than 800 m as “fine-scale.”

5. Results

Spatial scaling may be observed in a linear relationship
between log resolution and log variance. If the spatial corre-
lation structure of soil moisture fields can be accurately mod-
eled with such a relationship, then the statistical structure of
fine-scale soil moisture fields can be inferred from coarse-
scale data.

5.1. Results of Soil Moisture and Soil Dielectric Inversion

The soil dielectric field estimated by the Dubois et al.
[1995] algorithm is shown in Figure 5a. Scene averaged val-
ues for estimated surface roughness kA and soil dielectric ¢
fields are shown in Figures 6a and 6b. The sliding window
illustrated in Figure 2a defines each scene. Dubois et al.
[1995] suggests that their inversion performs optimally over
natural surfaces with ki < 2.5. This condition is met over the
entire length of the transect.

Figure 5b shows the soil moisture field calculated by ap-
plying the Hallikainein et al. [1985] model (equation (13)) to
the soil dielectric field shown in Figure 5a. Figure 6¢ shows
scene averaged soil moisture values along the transect, based
on soil moisture values estimated by both the Hallikainein et
al. [1985] and Brisco et al. [1992] (equation (14)) models.
The observed spatial trend in the soil moisture field estimated
by the Brisco et al. [1992] model tends to reflect recent rain-
fall accumulations (see Figure 2b). The correlation between
rainfall accumulations and soil moisture is weaker for the
Hallikainein et al. [1985] results.

5.2. Performance of Spatial Scaling Model

The soil moisture fields estimated from both the Brisco et
al. [1992] and Hallikainein et al. [1985] models were ana-
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Figure 6. Scene averaged values of (a) surface roughness kh,
(b) soil dielectric ¢, and (c) volumetric soil moisture 6.

lyzed for the presence of spatial scaling. Figure 7 shows a
typical scaling plot calculated from an individual soil mois-
ture scene. The linear nature of the log-log plot appears to
support an assumption of spatial scaling for the field between
the scales of 100 and 6400 m. Figure 8a displays calculated
correlation coefficients (+%) for linear least square regression
fits to scaling plots constructed from scenes along both of the
soil moisture transects. The consistently large r* values for the
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Figure 7. Scaling plot of a single soil moisture scene. The
log-log linearity of the plot suggests that the field exhibits
spatial scaling. Therefore a linear regression fit at coarse-
scales combined with a linear extrapolation to fine-scales
should be capable of recovering fine-scale statistical informa-
tion [Dubayah et al., 1996).

linear fits suggest that the size of the scaling exponent does
not vary significantly with scale; that is, the scenes display
spatial scaling. This is especially true for the soil moisture
field produced using the Brisco et al. [1992] model.
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Figure 8. (a) Correlation coefficients and (b) scaling exponents for scaling plots con-
structed from scenes along the length of the Brisco et al. [1992] (solid circles) and the
Hallikainein et al. [1985] (open diamonds) soil moisture transects.
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Figure 9. Comparison of K, and K g, along the (a)
Brisco et al. [1992] and (b) Hallikainein et al. [1985] soil
moisture transects.

According to (6), fitting slopes to log-log plots like Figure
7 is one method of estimating scaling exponents. Figure 8b
plots 100 to 6400 m scaling exponents calculated within each
scene of both soil moisture transects. Scaling exponents for
the Hallikainein et al. [1985] model are less negative (less de-
crease in variability with scale) due to the inclusion of soil
texture variability in the estimation of soil moisture. This soil
texture variability reflected in the 1 km STATSGO soil tex-
ture map typically exhibits length scales larger than 6400 m.
The inclusion of this large-scale variability reduces the rela-
tive magnitude of the soil moisture variability at length scales
finer than 6400 m. Consequently, it leads to shallower log-
log slopes (i.e., less negative scaling exponents) in scaling
plots.

Taken together, Figures 7 and 8 suggest the following ap-
proach. Assume that a spatial scaling model accurately de-
scribes the correlation structure of the soil moisture field at
scales of 100 to 6400 m. If this assumption holds, then a
scaling exponent fit at coarse-scales (>800 m) can be accu-
rately extrapolated down to fine-scales (<800 m) [Dubayah et
al., 1996]. Figure 7 illustrates the procedure. This will be re-
ferred to as the “spatial scaling model.” The model can be
summarized as
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Figure 10. Scatter plot of K g Versus Ky s, for backscatter
scenes: (a) oyy and (b) oyy.

KZ,ﬁne = KZ,coarse R (23)

where K course is the scaling exponent fitted between 800 and
6400 m and K3 g is the exponent fitted between 100 and 800
m.

Figures 9a and 9b provide a more complete test of the spa-
tial scaling model’s ability to provide accurate estimates at
fine-scales. The figures plot K course and K3 e for each scene
along the length of both soil moisture transects. Gaps in the
figures (scenes without results) were deemed to be inade-
quately sampled according to the criteria described in section
4.4 and subsequently dropped from the analysis. The results
indicate that the spatial scaling model holds only approxi-
mately and that the departures can be quite large. The results
presented in Figure 9 are summarized in scatterplots shown in
Figures 12a and 12b. Figure 12 illustrates the existence of a
significant correlation between coarse- and fine-sale scaling
exponents for both models, but this correlation does not ap-
pear to follow the 1:1 ratio predicted by the spatial scaling
model.
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tric (¢) scenes.
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Figure 12. Scatter plot of K, course VErsus K g, for soil mois-
ture (6) scenes: (a) Brisco et al. [1985] and (b) Hallikainein et
al. [1992].

5.3. Evolution of Scaling Behavior During Data
Processing

Figure 12 suggests two features govern the scaling behav-
ior of soil moisture fields between the scales of 100 and 6400
m: a positive correlation between Kj couse and Kj fine and the
deviation of this correlation from the 1:1 line predicted by
spatial scaling. Because Kj course and K fine share a common
dependence on the variance of the soil moisture field at
scales coarser than 6400 m, statistical interpretation of this
correlation is difficult. As a consequence, further analysis
centered on the evolution of the relationship between
K3 coarse and Kj g as backscatter imagery was processed
into estimates of soil moisture, through the intermediate
step of soil dielectric. Scatterplots of K; couse Versus Kj fine,
analogous to those shown in Figure 12, were constructed for
the following fields along the transect: 64y and oyy backscat-
ter (Figure 10), soil dielectric (Figure 11), soil moisture based
on the Brisco et al. [1992] model (Figure 12a), and soil
moisture derived from the Hallikainein et al. [1985] model
(Figure 12b).

For each scatterplot the following ratio was calculated

2(1%2{‘% =K fine )2
Z(KZ.ﬁne - EZ,tilxc)z ’

where K 2.fine and I?”me are the predicted and mean observed
values for the fine-scale scaling exponent along the length of
the transect. The spatial scaling model predicts a value of
K fine €qual to K3 course- The ratio defined in (24) is a normal-
ized measure of the error associated with the spatial scaling
model and assesses the ability of a downscaling model, based
on spatial scaling, to accurately predict K, fine given K3 course-
Figure 13a plots values of this ratio for each of the processing
steps. The increase in the normalized error, from the radar
backscatter data (left two points) into soil dielectric and then
soil moisture (right two points), suggests that the estimation
of the soil moisture field is associated with a reduction in the
predictive ability of the spatial scaling model.

Figures 13b and 13c plot 7 values and slopes estimated
from fitting linear regressions to the scatterplots shown in

(24)
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Figures 10, 11, and 12. The spatial scaling model predicts a
slope of 1.0 for this relationship. Figure 13b demonstrates
that processing of radar backscatter into soil moisture esti-
mates results in fields that deviate from this prediction. But,
as shown in Figure 13c, the strength of the correlation-be-
tween K fine and K3 course appears to increase during process-

ing.
6. Conclusions

Results suggest that the coarse-scale (800 to 6400 m) cor-
relation structure of volumetric soil moisture fields can be re-
lated to statistics observed at finer (100 to 800 m) scales.
However, the form of the relationship does not conform to a
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Figure 13. Measured values of (a) the normalized error, see
(24), associated with the spatial scaling model, (b) fitted
slope, (c) and * for scatterplots shown in Figures 10, 11, and
12.
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spatial scaling model. In fact, the predictive power of the
spatial scaling model is reduced when backscatter images are
processed into estimations of soil moisture (Figure 13a). Two
alternative features are attributed to the scaling behavior of
soil moisture fields between 800 and 6400 m: the presence of
a correlation between fine- and coarse-scale scaling exponents
(Figure 13c) and the deviation of this correlation from the 1:1
line predicted by spatial scaling (Figure 13b). Both of these
attributes emerge as backscatter fields are processed into es-
timates of soil moisture, through the intermediate step of es-
timating soil dielectric. These results suggest that a robust
downscaling procedure, applied to soil moisture over these
length scales (100 to 6400 m), will require a more compli-
cated description of the relationship between Kj g, and
K couse than the 1:1 assumption made by the spatial scaling
model.

Clearly errors exist in the estimated soil moisture imagery.
The lack of temporal coverage makes it difficult to com-
pletely filter the effects of static (i.e., nonsoil moisture)
sources of variability. Topography, soil texture, and vegeta-
tion are all capable of introducing spurious variability into
soil moisture maps derived from SIR-C data. To what degree
these sources of error affect the soil moisture scaling attrib-
utes noted in the previous paragraph is difficult to quantify.
However, the fact that these attributes emerge as the soil
moisture signal is gradually isolated during processing sug-
gests that they are true expressions of soil moisture variabil-
ity.

The long transect used in this analysis is a critical compo-
nent for understanding the scaling behavior of soil moisture
fields. The large domain size (200 km) combined with the
fine resolution (25 m) provides a rare look at the scaling be-
havior of soil moisture fields at scales that span the gap be-
tween typical in situ investigations (~100 m) and the resolu-
tion of next generation microwave remote sensors (10 to 50
km). The large domain size also makes it possible to analyze
soil moisture fields under a variety of topographic, vegetative,
and hydrologic conditions. The transect examined here, for
example, crosses a steep gradient in antecedent rainfall accu-
mulations (see Figure 2b).

Further work should be based on repeated imaging of the
same landscape over a broad range of hydrologic conditions.
Complete validation of these results will also require com-
parisons of soil moisture scaling behavior measured using a
variety of observational and computational tools (e.g., in situ,
passive microwave, active microwave, and hydrologic mod-
eling). The data sets for such a complete analysis do not exist
yet. Until they do, analysis of the April 1994 SIR-C data set
provides a valuable first look at soil moisture scaling proper-
ties in the southern Great Plains.
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