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Abstract

Leafy spurge, Euphorbia esula L. is an adventive, perennial weed that infests approximately 1.2 million ha of land in North America. It

often forms dense stands that displace native vegetation and useful forage plants on rangelands and in riparian habitats. Leafy spurge is a

good candidate for detection via remote sensing because the distinctive yellow-green color of its bracts is spectrally unique when compared to

co-occurring green vegetation. During 1999, Airborne Visible Infrared Imaging Spectrometer (AVIRIS) imagery was acquired in northeastern

Wyoming and ground cover data were collected. Mixture tuned matched filtering (MTMF), a specialized type of spectral mixture analysis,

was used to estimate leafy spurge canopy cover and map leafy spurge distribution. Overall performance of MTMF for estimating percent

cover of leafy spurge for all sites was good (r2 = 0.69) with better performance in prairie areas (r2 = 0.79) and poorer performance occurring

on wooded sites (r2 = 0.57). However, results demonstrated that in open canopies with leafy spurge in the understory, the spectral signature is

sufficiently distinct to be detectable. The techniques presented here could be used for constructing leafy spurge distribution and abundance

maps with satellite hyperspectral data for larger regional areas.

D 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

Invasions of exotic organisms have been proposed as one

of the largest components of global environmental change,

second only to habitat destruction (Vitousek, D’Antonio,

Loope, & Westbrooks, 1996). Leafy spurge, Euphorbia

esula L., is only one of hundreds of successful exotic plant

species that have invaded North America. It is an adventive,

perennial weed that infests approximately 1.2 million ha of

land in North America (Lajeuness, Sheley, Duncan, & Lym,

1999). Its distribution includes the northern Great Plains of

the United States and the prairie provinces of Canada

(DeLoach, 1997). It often forms dense stands that displace

native vegetation and useful forage plants on rangelands and

in riparian habitats. Infestations of leafy spurge destroy the

quality of grazing lands for cattle and horses (Bangsund &

Leistritz, 1991; Beck, 1993; Hein & Miller, 1992), degrade

the forage base and structure of wildlife habitat (Trammell

& Butler, 1995), decrease plant diversity (Belcher & Wil-

son, 1989), and reduce land value (Leistritz, Bangsund, &

Leitch, 1992).

One of the fundamental research needs in leafy spurge

management, and in invasive plant management as a whole,

is cost-effective, large-scale, and long-term documentation

and monitoring of plant populations (Johnson, 1999). Leafy

spurge populations usually cover large regions, and mon-

itoring the entire area is needed to effectively reach con-

clusions about changes in distribution and amount. Ground

survey work in large areas is prohibitively expensive and

time-consuming (Everitt et al., 1995). Often, data generated

from ground survey work are quickly outdated as weed

populations change due to abiotic factors and control

measures (Akiyama, Yamagata, Saibayama, Hayashi, &

Fujita, 1989; Pitt & Miller, 1988; Thomas D. Whitson,

personal communication). Survey questionnaires may be

biased, and weed problems may even be exaggerated by

land managers and land owners (Auld, 1971). Therefore, a

method of monitoring is needed that can quickly and
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efficiently collect data over a large area on a routine basis.

The lack of quantitative data hinders further research on the

dynamics of exotic plant invasions, the assessment of differ-

ent management implementations, and results in impreci-

sion when making decisions about management and policy.

Using remotely sensed data to map leafy spurge would

provide a valuable tool for documenting leafy spurge dis-

tribution and infestation levels. Differentiation of individual

green plant species can be problematic because all green

plants have similar spectral characteristics. Leafy spurge is a

good candidate for detection via remote sensing because the

distinctive yellow-green color of its bracts are likely to be

spectrally unique compared to the co-occurring vegetation.

Because spectral detail is necessary for differentiating sim-

ilar materials, high spectral resolution data is the most

appropriate for mapping individual plant species with a

high level of accuracy and precision (Clark, King, Ager,

& Swayze, 1995). Imaging spectrometers, or hyperspectral

sensors, provide data in which each pixel in the image has a

detailed set of reflectance values that allow interpretation of

the pixel’s spectrum. By using spectral mixture analysis to

model each pixel spectrum as a linear combination of a

finite number of spectrally distinct signatures or ‘‘endmem-

bers,’’ subpixel estimates of endmember abundance can be

obtained (Adams, Smith, & Johnson, 1985; Smith, Ustin,

Adams, & Gillespie, 1990). The main goal of this research

was to map leafy spurge from hyperspectral imagery using

spectral mixture analysis to obtain subpixel estimates of

leafy spurge cover. This was compared to ground estimates

of leafy spurge cover to assess the ability of hyperspectral

remote sensing data to estimate leafy spurge cover.

2. Background

2.1. Spectral characteristics of green vegetation

The reflectance spectra of most green leaves are remark-

ably alike due to similarities in chemical composition and

leaf structure (Gates, Keegan, Schleter, & Weidner, 1965;

Knipling, 1970). Plant pigments, such as chlorophylls and

carotenoids, have major effects upon the reflectance proper-

ties of green leaves in the visible wavelengths; whereas

reflectance properties in the near-infrared (NIR) wave-

lengths are due primarily to differences in leaf structure

(Gates et al., 1965; Slaton, Hunt, & Smith, 2001). Absorp-

tion by chlorophylls a and b dominate the visible wave-

lengths for most green plants with features occurring at 430

and 670 nm for chlorophyll a and at 460 and 650 nm for

chlorophyll b (measured in dimethyl sulfoxide; Chappelle,

Kim, & McMurtrey, 1992). However, these properties are

not entirely responsible for the reflectance of vegetation

canopies in remotely sensed imagery because a vegetation

canopy is composed of a mosaic of leaves, flowers, stems,

and shadow against a soil background (Hurcom, Harrison,

& Taberner, 1996). The spectral values derived from remote

sensing of vegetation are primarily due to reflectance at the

canopy level; however, the chemical composition of plants

can influence these values (Asner, 1998; Asner, Wessman,

Bateson, & Privette, 2000; Jacquemond, Baret, Andrieu,

Danson, & Jaggard, 1995; Martin & Aber, 1997).

2.2. Differentiation of plant species

Many different types of remote sensing data and image

processing techniques have been used in the past to differ-

entiate and map vegetation. Medium-resolution, multispec-

tral satellite imagery, such as Landsat Thematic Mapper

(TM) data, has adequate resolution spectrally and spatially

for differentiating broad vegetation types, and in some

cases, individual plant species with reflectance character-

istics that are unique spectrally or temporally (Akiyama et

al., 1989; Peters, Reed, Eve, & McDaniel, 1992; Taylor,

1990). However, the coarse spatial resolution limits detec-

tion to larger patches or infestations, and the coarse spectral

resolution can result in unacceptable levels of uncertainty

and error, or difficulties differentiating similar species.

Higher spectral and radiometric resolutions are needed to

resolve small differences in reflectance that would enable

differentiation of plant species. Several weed species with

distinctive spectral characteristics have been detected from

high spatial resolution airborne imagery (Carson, Lass, &

Callihan, 1995; Everitt, Alaniz, Escobar, & Davis, 1992;

Everitt & DeLoach, 1990; Everitt, Escobar, Alaniz, Villar-

real, & Davis, 1992; Everitt et al., 1994). This includes leafy

spurge, which, due to the distinctive yellow-green color of

its bracts, is detectable using aerial photography and digital

video imagery (Everitt et al., 1995). It is especially visible in

color infrared (CIR) aerial photography acquired during the

peak flowering period.

2.3. Hyperspectral sensors

Imaging spectroscopy, or hyperspectral remote sensing,

uses sensors such as the Airborne Visible Infrared Imaging

Spectrometer (AVIRIS) to measure light that has been

reflected from the Earth’s surface in numerous continuous

channels using band widths with a very narrow range of

wavelengths (Green, Eastwood, & Williams, 1998). AVIRIS

is operated by the Jet Propulsion Laboratory (JPL) and

collects data in the spectral range of 400 to 2500 nm sampled

by 224 spectral channels with a nominal 10 nm sampling

(Green et al., 1998). It also has very high radiometric reso-

lution (12 bits), resulting in an increased ability to distin-

guish fine differences in reflectance values among pixels.

AVIRIS was developed originally to resolve absorption

features characteristic of mineral spectra, and to resolve

characteristics of vegetation spectra (Goetz, Vane, Solomon,

& Rock, 1985; Ustin et al., 1991). Data from AVIRIS have

also been used in attempts to distinguish individual plant

species based on their unique spectral properties particularly

in the red, NIR, and MIR wavelengths (Green et al., 1998;
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McGwire, Minor, & Fenstermaker, 2000; Okin, Roberts,

Murray, & Okin, 2000; Roberts et al., 1998). Imaging

spectroscopy data have also been used to successfully

differentiate and map forest tree species (Kokaly, Clark, &

Livo, 1998; Martin, Newman, Aber, & Congalton, 1998)

and to map crop species in the San Luis Valley of Colorado

with an overall accuracy of 96% (Clark et al., 1995).

2.4. Spectral mixture analysis

The spectral reflectance of a given pixel is characteristic

of the mixture of component materials on the ground, each

component has its unique spectral signature. Spectral mix-

ture analysis assumes the pixel spectrum as a linear combi-

nation of a finite number of spectrally distinct endmembers

(Adams et al., 1985; Smith et al., 1990). Spectral mixture

analysis utilizes the high dimensionality of the AVIRIS

imagery to produce a suite of abundance or fraction images

for each endmember. Each fraction image shows a subpixel

estimate of endmember relative abundance as well as the

spatial distribution of the endmember (Adams et al., 1995).

When the endmembers include vegetation, the endmember

fraction is proportional to the areal abundance of projected

canopy cover (Roberts, Smith, & Adams, 1993; Ustin,

Smith, & Adams, 1993). Different varieties of spectral

mixture analysis have been used to discriminate spectrally

distinct types of vegetation with various levels of success

(McGwire et al., 2000; Roberts et al., 1998).

Mixture tuned matched filtering (MTMF), a special type

of spectral mixture analysis, is based on well-known signal

processing methodologies (Harsanyi & Chang, 1994). It

performs a ‘‘partial’’ unmixing by only finding the abun-

dance of a single, user-defined endmember, by maximizing

the response of the endmember of interest and minimizing

the response of the composite unknown background, thus

‘‘matching’’ the known signature. The background materi-

al’s data histogram is centered around 0.0, and the target

(endmember) data distribution occurs in the upper tail of the

histogram (Harsanyi & Chang, 1994). This technique pro-

duces images similar to standard spectral mixture analysis,

with results presented as gray-scale images, which provide a

means of estimating relative degree of match to the refer-

ence spectrum (where 1.0 is a perfect match). A major

advantage for this study is that MTMF does not require

signatures for the other endmembers that occur in the image

(Boardman, Kruse, & Green, 1995).

3. Methods

3.1. Research area

The study area for this research is in Crook County in

northeastern Wyoming, USA (latitude from 44.4j to 44.6j
North and longitude from 104.6j to 104.9j West), on the

northwestern edge of the Black Hills, a small mountain

range that extends from northeastern Wyoming southeast

into western South Dakota, USA. It consists of Devils

Tower National Monument (DTNM) and approximately

65 km2 of private land. Devils Tower is an eroded column

that is the 264-m remnant of a vertically jointed volcanic

intrusion (Karner & Halvorson, 1987). The private lands are

used extensively for livestock grazing (cattle and sheep)

with some areas of dryland farming and hay production.

The vegetation of the study area is a mosaic of ponderosa

pine (Pinus ponderosa) communities, grasslands, sage-

brush–grasslands, and pine–juniper (Juniperus scopulo-

rum) woodlands occurring on a large gently undulating

plateau of sedimentary rocks (Marriott, 1985). Riparian

areas are characterized by willow (Salix spp.) and plains

cottonwood (Populus deltoides) communities, with bur oak

(Quercus macrocarpa) and green ash (Fraxinus pennsylva-

nia) commonly occurring in draws. Elevations in the study

area range from 1219 m along the Belle Fourche River to

1584 m at Missouri Buttes along the northern border of the

study area. The average annual precipitation is 442 mm.

Leafy spurge is very well established throughout most of

the study area. Period of flowering generally begins in late

May, with the bracts showing, and ends in mid July (Lajeu-

ness et al., 1999).

3.2. Acquisition and atmospheric correction of AVIRIS

imagery

Airborne Visible Infrared Imaging Spectrometer (AVI-

RIS) imagery was acquired over the study area in north-

eastern Wyoming on July 6, 1999. The imagery was

acquired from the NASA ER-2 aircraft flown at an altitude

of 20 km with each pixel representing a ground area of

approximately 20� 20 m (Green et al., 1998). Two AVIRIS

scenes (each approximately 11� 9 km) covered much of the

study area.

Each AVIRIS scene was first radiometrically corrected at

the Jet Propulsion Laboratory. It was then atmospherically

corrected to apparent surface reflectance using Version 3.1

of the ATmosphere REMoval Program, or ATREM (Gao,

Heidebrecht, & Goetz, 1993; Gao, Heidebrecht, & Goetz,

1999; Goetz, Boardman, Kindel, & Heidebrecht, 1997).

Because of the limited range of field spectroradiometer data

(350–1050 nm), artifacts in the atmospheric correction at

ultraviolet wavelengths, and AVIRIS band spectral overlap,

a spectral subset of the AVIRIS data was taken. AVIRIS

bands 6 through 32 and 35 through 68 (418–1000 nm) were

used in the final analysis. A visual comparison of AVIRIS

reflectance spectra with ground reflectance spectra (Fig. 1)

showed a very good correspondence; therefore, we did not

perform an additional empirical line atmospheric correction.

3.3. Field spectroscopy

Field spectroradiometer data were collected in late June

1999 between 10:00 AM and 2:00 PM MST on a clear,
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sunny day similar to the weather and sky conditions 2 weeks

later on the day of the AVIRIS overflight. The spectra were

acquired using an Analytical Spectral Devices (ASD,

Boulder, CO) FieldSpec UV/VNIR Spectroradiometer. It

was not possible to collect field spectroradiometer data on

the day of the AVIRIS overflight due to instrument unavail-

ability. The ASD FieldSpec UV/VNIR acquires continuous

spectra from 350 to 1050 nm. Dark current and white

reference (Spectralon panel) corrections were made approx-

imately every 2–3 min. Each spectrum acquired in the field

consisted of 25 individual measurements taken consecu-

tively and averaged by the FieldSpec. Measurements were

acquired using the bare tip of the fiber optic cable, which

had a 25j field-of-view (FOV). All measurements were

made with the optic tip about 1.3 m above the target

material resulting in a FOV diameter of about 0.50 m.

The tip of the fiber optic cable was held at arm’s length

with that side of the body perpendicular to the sun’s

azimuth.

The final spectrum for leafy spurge, other plant species,

and calibration sites was calculated through postprocessing,

which consisted of examining sets of 10 of the averaged

field spectra, removing any extreme outliers, and averaging

the remaining spectra. All field spectra were resampled to

match the wavelengths and bandpass of the AVIRIS data,

based on the 1999 wavelength calibration file supplied by

JPL.

Two spatially and spectrally homogenous ground cali-

bration sites were used in this study, including a large

gravel natural gas pumping station compound and the

boulder field surrounding the base of Devils Tower (Fig.

1). Only one calibration site was present in each of the two

AVIRIS scenes. Each ground calibration site was charac-

terized using the ASD FieldSpec Spectroradiometer along a

series of transects with measurements being taken approx-

imately every 5 m using the same methods described

above.

3.4. Ground cover data collection for leafy spurge

During 1999, the same year that the AVIRIS data were

acquired, extensive ground data collection was performed

on field vegetation plots. Data were collected during the 2

weeks prior to and the 2 weeks following the AVIRIS flight.

The ground plots were part of a concurrent study that

documented leafy spurge percent cover in detail (Parker

Williams, 2001). Sixty-six circular vegetation plots with a

radius of 23 m were located within areas of leafy spurge

infestation. Each plot’s location was recorded using a

selective availability encoded Rockwell Precision Federal

Global Positioning System (GPS) unit (Rockwell Interna-

tional, Cedar Rapids, IA) and digital orthophotoquads.

These locations were transferred onto the AVIRIS imagery

from a digital orthophoto quad with an estimated positional

error of 1 pixel. This technique and associated error is

similar to what other researchers have reported (Hall, Foster,

Verbyla, Klein, & Benson, 1998; Marsh, Walsh, & Sobre-

vila, 1994). It has been shown that positional error results in

conservative bias of image assessments (Verbyla & Ham-

mond, 1995); therefore, the unavoidable positional error

introduced into this assessment would result in lower, or

conservative, correspondence between AVIRIS and ground

estimates of leafy spurge cover.

Each plot was also classified on the ground into three

different topographical position types: riparian, draw, or

upland, and into two different vegetation types: woodland

or prairie. Leafy spurge cover was estimated using broad

cover classes (0–5%, 5–25%, 25–50%, 50–75%, 75–

95%, and 95–100%) for five, randomly located 1� 2 m

subplots. The midpoint value of the cover class was

recorded as the leafy spurge cover for that subplot. Subplot

values were then averaged to obtain an estimate of leafy

spurge cover for the plot.

3.5. Image processing and analysis

In order to successfully employ MTMF, a series of image

processing steps (Fig. 2) were completed to select the leafy

spurge endmembers using field reflectance spectra and the

AVIRIS imagery. Unlike many green plants, leafy spurge

occurs in dense stands approaching 100% canopy cover in

the study area, making selection of pure leafy spurge

endmembers from the image data possible. First, the AVI-

RIS reflectance image was used as input into the minimum

noise fraction (MNF) transformation (Green, Berman, Swit-

zer, & Craig, 1988; Lee, Woodyatt, & Berman, 1990). By

examining the eigenvalues and the spatial information

contained in the output MNF transform images, the first

12 MNF transforms were carried forward in the analysis.

Eigenvalues decreased and noise increased substantially

after MNF transform 12 (Fig. 3). Second, the 12 MNF

transforms were used as input into a Pixel Purity Index (PPI)

analysis (Boardman et al., 1995) to identify potential end-

members in the AVIRIS imagery. A relatively high number

Fig. 1. Correspondence of corrected Airborne Visible Infrared Imaging

Spectrometer (AVIRIS) data with averaged field spectroradiometer data for

a calibration site, the boulder field at the base of Devils Tower.
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of iterations (3000) and a high PPI threshold value (5) were

used to eliminate large numbers of pixels and to emphasize

the unique pixels. The output of ‘‘pure’’ pixels from the PPI

procedure was examined using multidimensional visualiza-

tion software (RSI, 1999). Pixels were interactively clus-

tered and grouped based on their spatial relationship to each

other and upon examination of their spectral signatures. All

groups of pixels that did not contain a vegetation component

as identified by their spectral signatures were removed from

the multidimensional plot space, allowing finer discrimina-

tion of different vegetation pixels. The spectral signatures of

each remaining pixel group were systematically compared

to the resampled field spectra. The average spectral signa-

ture of a tightly clustered group of pixels matched the field

spectra for leafy spurge (Fig. 4), and there were no con-

founding groups with similar spectral signatures.

The leafy spurge endmember from the AVIRIS image

was used as the single endmember of interest in the mixture

tuned matched filtering (MTMF) analysis. Ground knowl-

edge of two training areas was used for initial development

of the MTMF procedures. The field spectrum of leafy

spurge from one of the training areas is compared to the

pixel spectrum for this site (Fig. 4).

In order to assess the variation between remotely sensed

and ground-measured cover of leafy spurge, data were

stratified by both topographic position (riparian, draw, or

upland) and vegetation type (woodland or prairie). The draw

and riparian strata were combined due to a small sample size

of riparian sites in the AVIRIS imagery. The relationships

between MTMF estimates of subpixel leafy spurge abun-

dance and ground estimates of leafy spurge cover were

examined using simple linear regression analysis (Zar,

1999) for all sites and for sites in each strata.

4. Results and discussion

4.1. Field spectroscopy

The reflectance spectrum of leafy spurge clearly differed

from other types of common green vegetation (Fig. 5). It

was easily differentiated based primarily on values in the

500–700 nm wavelength region. Leafy spurge was consis-

tently brighter than other vegetation between 500 and 650

nm. It also differed from other vegetation in the shape and

magnitude of the characteristic chlorophyll absorption fea-

tures between 550 and 685 nm (Fig. 5).

Furthermore, leafy spurge was distinguishable from yel-

low sweet clover (Melilotus officinalis), another prevalent

yellow-flowering plant species in the study area (Fig. 6).

Leafy spurge spectra have a much less reflectance in the

chlorophyll-absorption region (550–685 nm) and much

higher reflectance in the NIR (Fig. 6). The distinct spectral

Fig. 3. Eigenvalues for the Minimum Noise Fraction (MNF) transform

analysis. The MNF transforms are similar to a principal component

analysis. The first 12 eigenimages were carried forward in the analysis and

contained most of the useful image information.

Fig. 4. Comparison of the average spectral signature of leafy spurge pixels

from AVIRIS data selected as the endmember to leafy spurge spectra

obtained by a field spectroradiometer.

Fig. 2. Flowchart of the image processing steps used for mapping leafy

spurge from the AVIRIS imagery using mixture tuned matched filtering

(MTMF). This figure was modified from one by RSI (1999).
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reflectance of leafy spurge flowering bracts is uniquely

yellow-green, which spectral features distinguish it from

both typical green vegetation and yellow-flowering vegeta-

tion. However, there is no single wavelength that will

distinguish leafy spurge from other vegetation.

4.2. Mixture tuned matched filtering fraction images

A false color composite of one AVIRIS scene is pre-

sented in Fig. 7a, showing the area surrounding Devils

Tower National Monument. The dark areas of the image

are generally coniferous forests, surrounding Devils Tower

with more patches to the west (lower part of the image, Fig.

7a). The Bell Fourche River is visible along the eastern side

of Devils Tower; the bright orange color of the fields along

the river are indications of leafy spurge Fig. 7a. However,

reliance on color alone causes some confusion with some

soil types.

The output from the mixture tuned matched filtering

(MTMF) analysis was a fraction image with values for each

pixel representing the relative subpixel abundance of leafy

spurge, and an infeasibility image with values ranging from

1 to 12 (Fig. 7b). Pixels with a high fraction value and a low

infeasibility value ( < 6) had a high percent cover of leafy

spurge, while those with high infeasibility values were not

classified as leafy spurge. Infeasibility is an estimate on the

degree that the various spectral components explain the

pixel spectrum, similar to the constraint in standard spectral

mixture analysis that the sum of endmember fractions must

equal unity (Boardman, 1998). All ground sites used for the

MTMF comparison were located in leafy spurge infesta-

tions, and all of these sites were classified as ‘‘leafy spurge

present’’ in the analysis.

Overall performance of the MTMF for estimating percent

cover of leafy spurge for all sites was good (Fig. 8). A

significant linear relationship exists between the MTMF

fraction and the ground cover estimate that was not signifi-

cantly different from the one-to-one line (P= 0.82). The

standard error of the y-estimate was 0.0979, or about 10%

cover. Whereas the data are from two community types and

three topographic positions, the one-to-one relationship

shows that, on average, the MTMF fraction is a measure

of leafy spurge cover. Because other methods of remote

sensing were not compared in this study, it is not known if

the MTMF method with hyperspectral imagery is the best

for mapping leafy spurge distribution and amount.

4.3. Effect of topographic position and vegetation type

Leafy spurge cover in sites located in draws was esti-

mated slightly better than those located in upland areas (Fig.

9). The standard error of the y-estimate was 0.0877 and

0.0923 for draws and upland areas, respectively. The

regression equations for the two topographic positions were

significantly different from each other (P= 0.989), with the

slope for the draw regression line being less than 1 and the

slope for the upland regression being greater than 1 (Fig. 9).

There were only three plots in the AVIRIS imagery that

were from the riparian sites, so these data were not included

in the analysis for topographic position.

Total spurge cover was generally higher at draw sites

than in upland sites (Fig. 9). The better estimation of cover

at draw sites may be due in part to variability in leafy spurge

phenology. Upland sites generally have less available mois-

ture in late June and early July than do more mesic draw

sites, so the flowering period ends earlier for the upland

sites. Moreover, draw sites are generally more protected and

warmer, so leafy spurge generally starts flowering earlier

compared to upland sites. The draw sites will therefore have

a long, uniform period of flowering whereas the upland sites

will be dependent on local weather conditions. The varia-

bility of flowering period for upland sites may be a limiting

Fig. 6. Comparison of averaged field spectra for leafy spurge and yellow

sweet clover. Yellow sweet clover is another common weed that flowers at

the time of year as leafy spurge.

Fig. 5. Comparison of averaged field spectra for vegetation and soils. Grass

and alfalfa have different canopy types.
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Fig. 7. (a) False color composite of the AVIRIS scene over Devils Tower National Monument. (b) MTMF fraction image for leafy spurge. The tops of the

images point to the southeast. The bands used in the false color composite are: blue-band 23 (587 nm), green-band 33 (654 nm), and red-band 53 (845 nm). The

color levels for the MTMF fraction are: black—0 to 0.10, dark green—0.10 to 0.30, light green—0.30 to 0.50, and yellow—greater than 0.50.
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factor for detection of leafy spurge due to year-to-year

variability in precipitation.

The MTMF analysis performed very well on sites located

in areas of prairie, which included sites in the three topo-

graphic positions (Fig. 10A). The standard error of the y-

estimate was 0.0781. There was no significant difference

between the prairie and woodland regression equations

(P= 0.546). For the woodland areas, the MTMF analysis

performed poorly in estimating leafy spurge cover (Fig.

10B), the regression for the woodland type had the largest

standard error of the y-estimate ( = 0.125) of any topo-

graphic or landcover stratification.

The low significance of the regression equation for the

woodland sites (Fig. 10B) may be explained in relation to

tree canopy obscuring detection from an aerial perspective

and variations in tree canopy cover, shade, and view angle

between sites. Materials are often obscured by forest cano-

pies, especially when viewed at off-nadir angles (Hall et al.,

1998). Possibly, positional error in woodland areas may

have a larger effect on image to ground correspondence than

in nonwooded prairie. Finally, multiple scattering can lead

to nonlinear mixing (Borel & Gerstl, 1994; Ray & Murray,

1996; Roberts et al., 1993), resulting in less precise esti-

mates of leafy spurge cover from linear spectral mixture

analysis. However, the fact that leafy spurge was detected as

present in all of the woodland sites at all is an encouraging

demonstration of the MTMF technique.

4.4. Mixture analysis and vegetation cover

Three other studies have been published that examine the

relationship between field and remotely sensed data esti-

mates of vegetation percent cover. Smith et al. (1990) and

Elmore, Mustard, Manning, and Lobell (2000) estimated

vegetation abundance in deserts from Landsat TM imagery

using spectral mixture analysis; whereas McGwire et al.

(2000) estimated percent green vegetative cover for areas of

sparse vegetation in arid environments from Probe-1 hyper-

spectral data using spectral mixture analysis. Smith et al.

found that remotely sensed data consistently underestimated

the cover of vegetation consisting of open canopies such as

desert shrubs when compared to ground estimates of percent

canopy cover. This contrasts with our findings; however,

leafy spurge plants are characterized by a fairly uniform

dense canopy unlike the form of many desert shrubs.

Elmore et al. show that spectral mixture analysis was

superior to vegetation indices (Normalized Difference Veg-

etation Index) for estimation of green cover. Based on the

Fig. 8. Regression of MTMF fraction values against percent canopy cover

of leafy spurge for all ground data.

Fig. 9. Regression of MTMF fraction values against percent canopy cover

of leafy spurge for two different topographic positions: (A) plots occurring

in draws, and (B) plots occurring on upland sites. Data from all vegetation

communities were used for the analyses.

Fig. 10. Regression of MTMF fraction values against percent canopy cover

of leafy spurge for two different vegetation communities: (A) prairies and

(B) woodlands. Data from all topographic positions, including three

riparian plots, were used for the analyses.
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spectra of leafy spurge (Figs. 4–6), indices for leafy spurge

based on combinations of green and red wavelengths will be

very sensitive to the spectral resolution of the sensor.

For comparisons of spectral mixture analysis on airborne

hyperspectral data to ground estimates of percent green

canopy cover, McGwire et al. (2000) reported a regression

slope of 1.074, with a Y intercept of 3.1%, and an

R2 = 0.737. Using hyperspectral data, they were able to

achieve good estimates of vegetation canopy cover. They

also suggest that the Y intercept represents a detection

threshold of 3.1% green vegetation cover. Based on the

sensitivity of MTMF, a leafy spurge detection threshold for

all sites of 5.39% seems quite likely (Fig. 8). When

examining green vegetation cover, the results of McGwire

et al. are very comparable to the results of this study;

however, they did not find predictable relationships between

individual desert shrub species endmembers and their

ground percent cover. This finding emphasizes the advant-

age of leafy spurge’s unique bract color and growth habit in

aiding discrimination using MTMF.

5. Conclusions

Mixture tuned matched filtering (MTMF) has been

reported as a superior method for detection of materials in

hyperspectral imagery (Boardman, 1998). It has been shown

to outperform spectral mixture modeling and matched filter-

ing, especially in cases of subtle, subpixel occurrences

(Boardman, 1998). It also has the added advantage in cases

of mapping individual materials of not requiring identifica-

tion of all potential endmembers. MTMF performed very

well for mapping leafy spurge and estimating leafy spurge

canopy cover. Its sensitivity for detecting and estimating

leafy spurge were very encouraging.

Leafy spurge has several characteristics that make it an

ideal species for detection from remotely sensed data, so

caution must be fostered when considering mapping other

invasive species using hyperspectral data. Leafy spurge

grows in large dominant stands, is a robust plant with a

dense canopy, and has distinctive flowering bracts for a

several weeks during the growing season. All of these

factors make it easier to map than most other invasive

species. Its habit of forming large uniform stands with a

dense canopy probably also ameliorate problems of posi-

tional error and nonlinear spectral mixing, allowing good

prediction. There was also a certain amount of uncertainty in

the ground data collection, because it involved estimates

using broad cover classes. However, keeping these things in

perspective, mapping leafy spurge using hyperspectral

remote sensing data is feasible and reasonably accurate for

estimating percent cover within broad cover classes. Obvi-

ously, mapping leafy spurge under tree canopies is problem-

atic. Although this is one limitation of the method, results

demonstrated that in open canopies that have leafy spurge

growing in the understory, it dominates the spectral signa-

ture sufficiently to be detectable. The techniques presented

here could possibly be used for constructing leafy spurge

distribution and abundance maps with satellite hyperspectral

data for larger regional areas.
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